History of Autoclaved Aerated Concrete # The short story of a long lasting building material Author: Willem van Boggelen Publishing Date: April 2014 #### **Abstract:** Autoclaved Aerated Concrete (AAC or Aircrete) is a popular building material that draws its roots from the early 20th century. Throughout its existence AAC has gained a considerable share in international construction markets and today maintains its reputation of the building material of the future. This review presents the background on AAC discovery, early commercial development and eventual international success. Different AAC manufacturing technologies are described and how competition contributed to ways of making Aircrete over the years. An overview of latest AAC developments due to continued innovation will conclude with an outlook on the AAC industry landscape. **Keywords:** Autoclaved Aerated Concrete, AAC technology, AAC market growth, reinforced elements, AAC product development. #### About the author: Dipl. Eng. Willem van Boggelen holds an academic degree in Mechanical Engineering and Fluid Mechanics and has over 35 years of profound industry experience, working with more than 100 different AAC plants across the world. His international expert status on AAC is confirmed by many publications, consulting evaluations, lectures and technical conferences. Mr. van Boggelen is an independent Technology Consultant and Chairman of the Board of Aircrete Group N.V., supporting the organization with know-how and innovations on systems technology. Autoclaved Aerated Concrete as a building material exists and has been industrially produced since the beginning of 20th century. AAC stands for Autoclaved Aerated Concrete, otherwise known as Aerated Cellular Concrete or Aircrete. Early history of autoclaved aerated concrete is based on a series of process patents. In 1880 a German researcher Michaelis was granted a patent on his steam curing processes. Czech successfully tested and patented in 1889 the method of "aerating" the concrete by carbon dioxide. Americans Aylsworth and Dyer used aluminium powder and calcium hydroxide to attain porous cementitious mixture for which they also received a patent in 1914. Swede Axel Eriksson made a serious next step towards developing modern AAC when in 1920 he patented the methods of making aerated mix of limestone and ground slate (a so-called "lime formula"). #### Chemistry All in all, the combination of **cement**, **lime**, **gypsum** (anhydrite), finely ground **sand** and most importantly **aluminium powder** causes the mixture to expand considerably. From the beginning to the end the simplified chemical reactions look as follows: - 1 CaO+H₂O \longrightarrow Ca(OH)₂ + 65,2 KJ/mol - 2 $3Ca(OH)_2 + 2AI + 6H_2O \rightarrow Ca3(AI(OH)_6)_2 + 3H_2$ - 3 $6SiO_2 + 5Ca(OH)_2 \longrightarrow 5CaO \cdot 6SiO_2 \cdot 5H_2O$ This is the final Tobermorite or Hydrated Calcium Silicate $C_5S_6H_5$. ## The Breakthrough The real breakthrough in the masonry industry came in 1923 when same architect Axel Eriksson discovered that this moist foamed mass can easily handle pressurized steam curing process, also known as autoclaving. While applying for a patent two crucial conclusions were drawn: 1. the material hardened fast thanks to the autoclaving process 2. shrinkage was almost absent after steam curing compared to the normal air curing. Additionally, later it was also discovered that alternative materials, such as pulverized ash, could be used instead of lime/cement, allowing to economize on expensive raw material binder. ## **Start of Commercial Manufacturing** Eriksson's success immediately attracted a muchneeded commercial interest and in 1929 the first large scale manufacturing facility of these artificially-made crystalized stone blocks was launched in a factory "Yxhults Stenhuggeri Aktibolag", Sweden under the name Yxhult. In 1940 the "Yxhult" name was changed to YTONG as this name was easier to pronounce. In 1932 the factory Carlsro Kalkbruk Skovde started with AAC block production and the product acquired the brand name **Durox**. Important competitor arose in 1934 which started to manufacture AAC blocks under the brand name Siporit (as of 1937 a wellknown Siporex). Siporex was also the first to introduce AAC reinforced elements in 1935, namely roof/floor panels and lintels. Good structural properties of the newly created AAC material soon spread all over Western Europe, with more than 6 plants in Sweden alone. ## **Different Technologies – International Success** AAC manufacturing went international in 1937 with introduction of technology licensing and know-how transfer. After WWII, there existed only few leading AAC technology suppliers: Siporex and Ytong (both belonging to the Swedes), Durox (bought by the Dutch) and Hebel (German). Throughout the 20th century all of them successfully sold AAC technology licenses around the world while at the same time annual conventions contributed to further developments in AAC production, product quality and its applications. Given different manufacturing technologies, production of AAC blocks became associated with Ytong (tilt-cake system) while production of both AAC blocks and reinforced elements was led by Durox, Siporex and later Hebel (flat-cake systems). ### **Competition and Growth** Germany, United Kingdom, Sweden, Denmark and the Netherlands established themselves as the main AAC hubs after WWII, albeit the fact that countries used different technologies to produce similar products. Following the triumph of AAC material on an international arena, competition grew stronger between the parties in that relatively small market, often ending up in a battle of patents. Slowly in the 1980s, the influence of Swedes was diminished due to the suffering domestic market and as a result Siporex activities were reduced to a minimum and no new plants were built since the 1990s. Additionally, during the 1980s Germans took over and improved on the know-how of Ytong from the Swedes. Despite fierce competition, multiple plants were realized in Asia, Middle East and Eastern Europe, based on all four different technologies. In the beginning of the 1990s the first AAC plant based on a tilt-cake technology (Ytong) was supplied to China. From that point onwards technology outflow became widespread and, as of 2014, there are more than 3,000 AAC production facilities with an estimated production capacity of 450 million m3 per year of non-reinforced blocks. Mass production of blocks is also popular in Central and Eastern Europe and India while Japanese, Korean, Australian and Western European markets are focusing more and more on reinforced panels and high precision blocks. #### **Reinforced elements** Short after the first AAC block plant emerged in Sweden in 1929, structural reinforced elements followed. Siporex posed a strong competition to Eriksson's AAC process technology when first reinforced roof and floor panels were successfully manufactured in Sweden, with a so-called "cement formula". It used mainly cement instead of lime as a binder which improved the process properties as well as structural load bearing characteristics. The main goal of the Siporex products was to design a complete building system using only AAC. A decade later, Hebel technology evolved in the mid-1940s under the patronage of German engineer Josef Hebel. He based his production technology on that of Siporex (after studying the plant in the Baltics during the WWII) and managed to bring remarkable improvements to the AAC production technology, especially to the reinforced products. Given the disappearance of Siporex from the market, technologies Durox and Hebel became leaders in supplying the reinforced AAC elements due to their more suitable and favourable cutting and curing technique. In Eastern and Western Europe many AAC plants successfully supply both AAC blocks and AAC panels. Japan until today remains a 100% reinforced elements market. Since 2002 reinforced element production was further perfected by the Dutch and nowadays AIRCRETE technology allows Europe's manufacturing complete prefab AAC housing solutions. Taking into consideration fast, economic and structural building with AAC panels, many countries today are looking for ways to introduce complete AAC housing solutions in their local construction markets. ## **Mergers & Acquisitions** Mergers and acquisitions wave of the 1990s has had a crucial impact on the world of AAC as we know it today. In the period between early 1990s and early 2000s ownership of technologies, plants and brand names became disoriented. Plants, patents, technologies and patents of Durox, Ytong and Hebel ended up under one roof, a company which got a name Xella. At one point, Hebel and Durox products were produced under the brand name Ytong as all three brand names were unified under the name Ytong. In 2001, a range of factories were closed under the premise of overcapacity. Many AAC technology specialists lost their jobs. Hebel took the biggest hit as their main base in Emmering, Germany was closed and some Hebel facilities were liquidated, stating that production costs became too high. The market of architects, builders and especially the end consumers could not understand the disappearance of the well-known brands. Following this, brand "Hebel" was reinstated as a brand for reinforced products while Ytong remained a brand for blocks. Furthermore, not a single Durox plant was closed throughout AAC's history and AAC is produced until now in the remaining plants as well as the original Durox based plants. The period was an exodus of knowhow in AAC world and many licensees had to find their own way in the world of aircrete. **AAC Machine Builders** During the aforementioned period, market forces changed considerably shifting the focus away from technology and processes to machines and pricing. The machine builders, mainly from Europe and later China, entered the open space in the market. Ytong technology and its various tilt-cake derivations were picked up by machine building companies and sold as "own technology" AAC equipment. The focus of the industry went from Technology supply and assistance to Machine supply and after-sales. Autoclaved aerated concrete world market became fragmented as knowledge sharing about production technology, product application and latest developments was not promoted anymore. Machine builders, generally, have no own AAC production facilities and therefore rely on their customers when it comes to AAC product, application, chemical processes, etc. Additionally, financial participation by technology suppliers in their own factories was not uncommon in the past. Hence, the gap between the architects, contractors, factories and machine builders is wider today than it used to be, forcing every AAC producer to solve the same industry issues on their own. ### **AAC Products Today** The technology of aircrete production has developed significantly over the last decennia. Production of ordinary non-reinforced AAC blocks is not linked to any exclusive know-how anymore and as a result AAC blocks became a commodity in many markets. Manufacturing light and heavy reinforced AAC elements is still a big challenge for majority of world producers, primarily with tiltcake technologies. Nevertheless, with time physical properties of AAC material improved and application became more universal, from a construction point of view. Today, AAC is a structural solid building material, excellent thermal insulator, good sound absorber and also an attractive decoration material. Certain technology professionals are able to produce nowadays product density range from 300-800 kg/m3 where lambda values of 0,08 (thermal conductivity) at a density of 300 kg/m3 are no exception anymore. Additionally, compliance with strict EU standards (EN 771-4 and EN 772-16) results in high-precision products (tolerances of <1mm for blocks and <3mm for panels) which can be finished on-site with a thin bed mortar (glue) instead of thick layer of standard mortar, allowing to economize on the total cost of construction. The production of **Ultra-Light aircrete blocks** with a lambda value of 0,045 and lower density of 145 kg/m3 is already a foothold in the European AAC market. The presence of smooth product surfaces, developed in 1987 on a Durox line in the Netherlands, has changed markets considerably. AIRCRETE Europe has further improved that technology by introducing **SUPER SMOOTH surfaces** to AAC products thanks to its innovative flat-cake technology with a High Speed Cutting Frame. The system uses double wired cutting technology which produces product surface with closed pores. As a result fast and cost-effective finishing is possible, e.g. direct application of paint or wallpaper. AAC also offers a solution to safe building in seismically active zones, such as Japan, where a rocking AAC panel design offers buildings a protection up to 8 on a Richter's scale. Another grand AAC development is aircrete panels with increased sound absorption properties, a socalled Shizukalite boards, a solution which offers an extra comfort of soundproofing for any type of sound sensitive environments. In contrary to conventional AAC independent pore structure, these AAC panels have continuous open pore structures providing an opportunity for ideal acoustic absorption next to roads, HVACs, offices, etc. Application of AAC panels as firewall solutions (internal and external) further supports the universal building material image of aircrete as AAC can easily withstand up to 5-6 hours of direct fire exposure. With these modern products, AAC as a highly insulating and ecological material can contribute to largely popular "green housing" tendencies with a focus on energy efficiency, ultimately designing homes without energy appliances ("passive house"). #### **Future of AAC** AAC market development went through a major revolution since the 1990s. With large increase in absolute number of AAC manufacturing facilities, producers worldwide are striving to improve the balance between manufacturing cost and physical material properties, with a focus on thermally efficient building. International 'green' policies and strict building regulations are putting pressure on AAC producers demanding more energyefficient materials (low density blocks and panels), better quality products (high product accuracy, surface quality) and wider range of product application (residential, commercial industrial). Beyond the existing AAC commodity market of blocks there is a growing worldwide demand for integrated building solutions. It is known that building with AAC panels makes it possible to reduce the total cost of ownership for the final consumer. Offering buildings made of solely prefab AAC elements results in a fast, easy construction and no on-site waste. Inevitably, this forward looking approach requires investment in high-quality and automated equipment that uses the latest manufacturing technology. Hence, both existing manufacturers of AAC blocks and new investors that are looking to introduce AAC to their market should not limit themselves to a low quality and limited range of product output. Producing a complete AAC solution is a next step towards the market expansion and increasing market share of AAC as a building material. Investments in innovative plant upgrades and new plants with modern AAC technology are essential to stay ahead of ever-changing construction market. #### Literature resources: - 1. Bagheri, H., 2006. *Prestressed hybrids of AAC and HPC The BCE (Block Composed Element)* building system, KTH, TRITA-ARK-Forskningspublikation 2006:9, Stockholm. ISSN 1402-7453. - 2. Dr. A. Kitsch, 2012. "YTONG Der Porenbeton, Eine Marke macht Geschichte", Bielefeld, ISBN 978-3-00-038143-0. - 3. G. Hellers and R. Schmidt, 2011. *Autoclaved aerated concrete (AAC) the story of a low-weight material, p.63-70.* 5th International Conference on Autoclaved Aerated Concrete, Bydgoszcz, ISBN 978-83-89334-26-4. - W.van Boggelen, 2005. Developments and opportunities for AAC with modern production technology. 4th International Conference on Autoclaved Aerated Concrete, London, ISBN 978-04-15383-56-1. - 5. W.van Boggelen, 2011. *The contribution of AAC in securing a sustainable future*. 5th International Conference on Autoclaved Aerated Concrete, Bydgoszcz, ISBN 978-83-89334-26-4. - 6. W.van Boggelen, 2012. *Key Technology for the Application and Production of Reinforced AAC products.* 7th International Conference on Autoclaved Aerated Concrete, Brest. - 7. Yxhult Gruppen, 1978. Professional Communication.